MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning

نویسندگان

چکیده

Objective. This paper proposes machine learning models for mapping surface electromyography (sEMG) signals to regression of joint angle, velocity, acceleration, torque, and activation torque. Approach. The models, collectively known as MuscleNET, take one four forms: ANN (forward artificial neural network), RNN (recurrent CNN (convolutional RCNN convolutional network). Inspired by conventional biomechanical muscle delayed kinematic were used along with sEMG the model's input; specifically, modeled novel configurations these input conditions. models' inputs contain either raw or filtered signals, which allowed evaluation filtering capabilities models. trained using human experimental data evaluated different individual data. Main results. Results compared in terms error (using root-mean-square) model computation delay. results indicate that (with signals) both data, can extract underlying motor control information (such torque angle) from pick-and-place tasks. CNNs RCNNs able filter signals. Significance. All forms MuscleNET found map within 2 ms, fast enough real-time applications such exoskeletons active prostheses. is particularly appropriate musculoskeletal simulation biomechatronic device control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

Adaptive parallelism mapping in dynamic environments using machine learning

Modern day hardware platforms are parallel and diverse, ranging from mobiles to data centers. Mainstream parallel applications execute in the same system competing for resources. This resource contention may lead to drastic degradation in a program’s performance. In addition, the execution environment composed of workloads and hardware resources, is dynamic and unpredictable. Efficient matching...

متن کامل

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

Diagnosing Breast Cancer by Machine Learning

Background and Aim: Cancer and in particular Breast cancer are among the diseases that have the highest mortality rate in Iran after heart disease. The accurate prognosis for Breast cancer is important, and the presence of various symptoms and features of this disease makes it difficult for doctors to diagnose. This study aimed to identify the factors affecting Breast cancer, modeling and ultim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neural Engineering

سال: 2021

ISSN: ['1741-2560', '1741-2552']

DOI: https://doi.org/10.1088/1741-2552/ac1adc